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In the field of topology optimization,increasing interest has been applied toward improving the practical applica-
bility of the methods. Mechanically, a cavity in a structure introduces stress concentrations and, hence, structurally
undesirable effects on the design. However, designs such as aircraft fuselages and wing ribs often require a specified
number of cavities for their functional capabilities. Cavities also have the favorable consequence of reducing the
weight. In this study, intelligent cavity creation is discussed as a means of determining an optimal topology with
a desired number of cavities, based on evolutionary structural optimization. After the effect is shown on the total
number of cavities when a new cavity is introduced during an optimization process, a parameter I is introduced
that delays cavity creation. An investigation is carried out to observe the effects of various parameters such as I"

and mesh density on the final number of cavities.

Introduction

N recent years, the developmentof the optimization methods has

focused on producingthe best or optimum structure solely under
structural criteria such as stress, stiffness, and weight."2 However,
as topology optimization has reached a level of maturity, interest
is growing in the practical applicability of these methods. Some of
these questions are manufacturability of the solution, checkerboard
patterns, mesh dependency, and the incorporation of nonstructural
constraints.

Manufacturability of an optimal topology may relate to various
aspects of a design, such as the nature of an optimization method
or the availability of manufacturing tools and technology. By the
use of Aboudi microstructuresor microcells with voids (see Refs. 1
and 3), a topology is represented with varying degrees of density
values or perforated regions. To achieve a practical solution, the
penalty technique is often employed to eliminate the intermediate
densities The solid isotropic microstructure with penalty method®
hasbeenintroducedas an alternativemethod that suppressedthe per-
foratedregions by relating the stiffnessto the density of the isotropic
material with a power greater than one. Another impractical feature
commonly observedin optimal topologiesis jaggededges.~® These
are due to the use of finite elements and do not representthe optimal
features. Postprocessingusing spline approximations and shape op-
timization has been suggested to obtain smooth outlines for these

topologies !
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A checkerboardpatterndescribesa region of alternatingsolid and
void elements in a topology and is commonly found in optimal so-
lutions. It has been proven that the formation of the checkerboards
is due to numerical instability and does not represent an optimal
feature of the design.!""'? Following on from this discovery, several
methods have been introducedto eliminate or prevent the formation
of the checkerboard patterns.”* It has been shown that the use of
higher-order finite elements mostly prevents checkerboarding'''?;
however, this is at the expense of the computational cost. An al-
ternative and computationally cheaper method is to use a weighted
average of the design sensitivity'* or elemental density'>'® over an
element and its neighbors.

It has been seen that reducing mesh dependency also reduces
checkerboarding!*!” The mesh independent filtering suggested
by Sigmund is an extension of the checkerboard filter using the
weighted averages of elements, which was mentioned earlier.!* The
method uses the element sensitivities computed by weighted aver-
ages based on the distances between elements and has been shown
to produce mesh-independentdesigns.

Another technique that produces mesh-independentresults is to
introduce a local gradient constraint on element density variation.
Petersson and Sigmund'® have been able to prove that the gradient
constraintnot only ensures existence of a solution but also prevents
the formation of checkerboards. However, the algorithm is consid-
ered to be computationally demanding due to the large number of
constraints.

The perimeter method imposes an additional constraint on the
perimeter, which is the sum of the circumferences of the internal
boundaries.!® A checkerboard can be viewed as a region of nu-
merous holes, and the number of holes is proportional to the total
perimeter. Thus, by introducing an upper bound to the total perime-
ter, iteffectivelyreduces the number of holes thatcan be created and,
hence, reduces checkerboards and mesh dependency. The perime-
ter method has been extended to three-dimensional optimization
problems 2

A common feature of the preceding three methods (i.e., mesh
independent filtering, local gradient constraints, and perimeter
method) is their potential ability to incorporate a sizing require-
ment as a design constraint. Sizing requirements are often deter-
mined by nonstructuralconcernssuch as manufacturingtechnology,
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functions,and aesthetics.In engineeringdesigns,some of these con-
straints may be more critical than the structural constraints.

Mesh independentfiltering has been shown to be efficient in min-
imum member size control, although it is not applicable to multiple
constraint optimization problems.!” The local gradient constraint
method, however,has successfullybeen extendedto minimum mem-
ber size control problems with multiple constraints. Zhou et al.'’
were able to impose the minimum member radius using a density
slope constraint and found more manufacturable solutions.

A direct consequence of the local gradient constraint on the ele-
ment densities is that it imposes an upper bound to the design oscil-
lations and, consequently, the maximum number of cavities.'® Sim-
ilarly, the perimeter constraint reduces the number of cavities in an
optimal topology, thereby preventing a checkerboard formation.!
Although these methods have the potential to control the number
of cavities, the bounds or values of these parameters that lead to a
desired number of cavities are not known.

Intelligentcavity creation (ICC) attempted to control the number
of cavitiesin an optimal topology.?' Based on evolutionarystructural
optimization? (ESO), ICC controls when the cavity is created during
optimization. The method starts from the full design domain with
no cavities and creates cavities as needed. Thus, when the number
of cavities reaches a desired number, ICC no longer creates cavities
but continues optimizing the existing boundaries, that is, topology
optimizationbecomes shape optimization.It has been demonstrated
that delaying the cavity initiation reduces the maximum number of
cavities in the final topology. As in the perimeter control method,
ICC also prevents the formation of checkerboards.

A further investigation on the ICC algorithm is carried out and
presentedin this paper, aimed to obtain guidelines for the selection
of the initial parameters for a desired number of cavities. During the
study, the ICC algorithm was modified to improve its effectiveness.
The next section explains the original formulation of ICC, followed
by a sectionoutlining the modificationsand the revised ICC method.
The effects of the various parameters such as optimizationrate and
mesh density on the final topology are then studied and discussed.
The results indicate a relationship between the parameters and the
number of cavities and provide a guide for selecting the parameters.

Original Formulation of ICC

It is proposed that there exists a set of optimal topologies for a
given design problem, with a varying number of cavities?! Origi-
nal ESO finds the solution with the maximum number of cavities
whereas nibbling ESO finds the solution with no cavities 2

The previousformulationof ICC is a hybrid of these two methods:
original ESO and nibbling ESO. Nibbling ESO is applied to optimize
only the boundaries of a structure. At the end of each iteration, the
stress valuesinside the structure are examined to determine the need
foracavity.If alow-stressregioninside the structurehas stress below
a predefined threshold, then it is said that there is a need for a cavity.
In such a case, original ESO is applied to initiate an internal cavity.
After creating a new cavity, nibbling ESO is continued to modify
the boundaries until there is a need for another cavity.

The need for a cavity is measured by insert cavity ratio (ICR),
which is a function of the current stress state and changes as the
structure is evolved, [Eq. (1)]. When this value is less than or equal
to the predefined threshold cavity creation number I', a new cavity
isinitiated. Note that for stress-basedESO, the optimization-driving
criterion is commonly the elemental von Mises stress:

OVM min

ICR = — (D

OVM b,min

where oyvmmin 1S the minimum criterion of nonboundary elements
and oy p.min the minimum criterion of boundary elements.

Modified Formulation of ICC
Definition of ICR
A stress distribution of a domain can be represented three dimen-
sionally as in Fig. 1, where, in this case, a low-stress region and
hence a need for a new cavity, is recognized at A. However, one
may encounter cases where the boundary stress is lower than the
nonboundary stress that is less than the deletion criterion. Such a

Fig.1 Example of stress distribution.

elements elements

¢)0<ICR<1

elements

a) ICR >1 b) ICR=1

Fig.2 Two-dimensionalstress distributions.

distributionis depictedin Fig. 2c, in the simplified two-dimensional
space where there is a need for a new cavity at B. However, due to
the low boundary stress, ICR can still be greater than one, and the
need for new cavities is not recognized.

Thus, a new definition of ICR is introduced. In contrast to the
previous definition that was a function of boundary stress values,
the new definition is a function of the deletion criterion. Here, only
the magnitudes of the stress are of interest, and, hence, the absolute
values are used to account for negative stresses:

ICR = |0 /0l 2)

where oy, is the minimum stress of nonboundary elements and oy
is the deletion criterion below which all elements are removed.

As a structure is evolved, the value of ICR changes and, thus, is
calculated at every iteration. If this value is greater than one, the
stress distribution can be depicted in two dimensions as in Fig. 2a,
where all stress values inside the structure are greater than oy, and,
hence, there is no need for a cavity.

When ICR = 1, the minimum nonboundary stress value equals
to oq4a (Fig. 2b). If, at this point, inside elements are allowed to be
removed, all elements with the stress value of oy or less would be
removed, and, thus, it can be said that the optimization technique is
equivalentto original ESO.

When 0 < ICR < 1 such as in Fig. 2c, there is at least one point
inside the structure where the stress value is less than oy Original
ESO immediately removes the elements with stress < og.;; thus, this
stress state would not normally be observed. However ICC controls
when a cavity is to be created, where the lower ICR value represents
an increased need for a cavity.

The value of ICR is compared with I" to determine the need for a
cavity. A cavity is created if the ICC inequality (3) is satisfied:

ICR<T (3)

where I' is the cavity creation number, 0 <T" <1.

The value of ICR indicates the need for a cavity, which increases
as ICR decreases. Hence, the delay mechanism for a cavity creation
is controlled by the magnitude of I', with the level of delay being
inversely proportional to I". Note here that when I' is set to 0, the
ICC inequality cannotbe true; therefore,a cavity will notbe created.
Therefore, ICC with I' =0 is equivalent to nibbling ESO.

Starting a Cavity
The preceding ICC method employs original ESO?? to initiate a
cavity, where elements are removed according to the ESO inequality

(4):
OvM.e = ODelCrit “4)

where ope cric 1 the deletion criterion, RR X ovm max; RR the rejec-
tion ratio?; and oy . the selected criterion of element e.
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When the optimization technique is switched during an evolu-
tionary process and an immediate initiation of a cavity is desired,
RR must be determined such that a cavity is created immediately,
and this is not an obvious task.

However, when a new cavity is required, the location for a new
cavity is known, namely, where the minimum nonboundary stress
occurs. Therefore, when a new cavity is needed, a new deletion
criterion is calculated according to Eq. (5) instead of the original
ESO formulation (4):

Ol = |ow| X (1 + RR¢) %)

where RR¢ is the rejection ratio set to a small number, typically
0.001.

The new definition of the deletion criterion is a value slightly
greater than the minimum stress of the nonboundary elements. This
ensures an immediate initiation of the cavities at the minimum stress
locations in the structure. Furthermore, if there were more than one
minimum stress location, which would be the case in symmetrical
structures, an appropriate number of cavities would be created with
a few elements per cavity. It also follows that one iteration would
suffice to initiate the cavities.

After creating an appropriatenumber of cavities, nibbling ESO is
continued with the earlier evolutionary rate constants. This allows
further modifications of the boundaries including the boundary of
any new cavities until the stress distribution is such that there is a
need for more cavities.

Modified Methodology of ICC

When adesign problemis defined, a finite element analysis (FEA)
is carried out on the design domain, providing the stress values to
determine which boundary elements are to be removed. Up to this
point, it follows nibbling ESO. However, at the end of a steady state,
ICRis calculatedand compared with I to determine whethera cavity
is required. If the ICC inequality (3) is not satisfied, nibbling ESO
is continued. If there is a need for a cavity, a new deletioncriterionis
calculated according to Eq. (5), and all boundary and nonboundary
elements below the new deletion criterion are removed.

After starting a cavity, the number of new cavities is counted, and
nibbling ESO is continued again until another need of new cavities
arises. When the current number of cavities reaches the required
number of cavities initially specified by the user, then there is no
need to create any more cavities. Thus, nibbling ESO is continued
without calculating ICR until the optimum is found and/or all of the
specified criteria are met.

The step-by-step process of the ICC algorithm is outlined here-
after and summarized in Fig. 3:

1) Define the design problem and specify kinematic constraints
and material properties. Specify the number of cavities required in
the structure and a value for I'.

2) Start nibbling ESO.

3) When a steady state is reached, check whether all design
constraints are met. If all design constraints are met and an opti-
mum is reached, terminate the optimization process here, otherwise
continue to step 4.

4) Compare the current number of cavities with the specified
required number of cavities. If there are enough cavities, then go
back to step 2 and continue nibbling ESO.

5) If there are not enough cavities, calculate the value of ICR and
compare it with I". If ICR is greater than I', go back to step 2 and
continue nibbling ESO, otherwise continue to step 6.

Define design problem;
do while (optimum is not reached)
Nibbling ESO;
if (current number of cavities < specified)
Calculate ICR;
If ICR<T)
Start a cavity;
end if,
end if,
end do,

Fig.3 ICC algorithm.

Table 1 Initial stress states of short cantilever beam

Maximum Mean Mean/maximum
Mesh stress stress stress ratio
48 x 30 12.86 3.350 0.261
64 x 40 17.07 3.354 0.197
80 x 50 21.30 3.356 0.158
96 x 60 25.53 3.358 0.132
112x 70 29.77 3.359 0.113

160

100

100N

AT

Fig. 4 Short cantilever beam design problem.

6) To create a cavity, first calculate the deletioncriterion (5). Then
remove all elements with stress values below the deletion criterion
value. After creating a cavity, go back to step 2.

Investigation of Optimization Parameters
and Number of Cavities

ICC controls when a cavity is initiated by varying I". However,
there are other optimizationparameterssuch as the mesh density and
ESO driving criterion. The effects of various initial parameters on
the optimum solutions are investigated and the results are discussed
in this section.

Optimization of Short Cantilever Beam
Problem Definition

A short cantileverbeam of aspectratio 1.6 is optimized using ICC
with varying parameter values. The beam is built in at the left-hand
side and a 100-N downward force is applied in the middle of the
right-hand end, as shown in Fig. 4. The material property of steel
is assumed and plane stress/strain elements are used to model the
problem. The ESO driving criterion was elemental von Mises (VM)
stress. The varied parameters are optimization-driving criterion of
maximumand mean stress, mesh density,and I'. Table 1 summarizes
the initial stress state for various mesh density.

The optimal topologies are selected by considering two factors:
volume and the ratio of the mean over maximum VM stress. Topolo-
gies with a volume reductionof around 40% are consideredfor com-
parison. The stress ratio represents the evenness in the distribution
of VM stresses, and, for a fully stressed design, the higher stress ra-
tio valueis preferred. Ideally, the stressratio should trend upward to
unity, but due to local high stresses at supports and load application
points this rarely happens with FEA (Table 1).

Optimization Driving Criterion

The maximum VM stress and the mean VM stress are selected
for the optimization-drivingcriteria. Using the mean VM stress as
an optimization-driving criterion means that when calculating the
deletion criterion in Eq. (4), the mean VM stress value is multiplied
by RR, instead of the maximum VM stress. Two mesh densities are
used: 64 x 40 and 112 x 70. The value of I is set to 1.0, creating
the maximum number of cavities for the given conditions.

As can be seen in Table 1, the calculation of the maximum VM
stress depends greatly on the mesh density due to the singularity
near the point loads and supports in the FEA formulation. Table 1
suggests that the maximum VM stress is approximately linearly
proportionalto the mesh density. However, the mean VM stress does
not vary greatly as the mesh density increases. It follows, therefore,
that optimization driven by the maximum VM stress is more mesh
dependent than the one by the mean VM stress.
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Table 2 Optimality comparison of maximum and mean VM
stress as driving criteria

Volume, Maximum Mean
Mesh Criteria Odel % stress stress
64 x 40 Maximum 3.60 43.6 19.66 6.98
112 x 70 Maximum 4.18 37.2 30.76 8.26
64 x 40 Mean 3.58 44.7 19.59 6.83
112 x 70 Mean 3.82 40.6 30.64 7.66

a) 64 X 40 maximum VM ¢) 112 X 70 maximum VM

b) 64 X 40 mean VM d) 112 X 70 mean VM

Fig.5 Optimal topologies with varying optimization driving criteria.

¢) 80 x 50

b) 64 x 40 d) 112 X 70(= 96 X 60)

Fig.6 Optimal topologies with varying mesh densities.

This mesh dependency characteristic can be seen in Fig. 5. For
mesh 64 x 40 and 112 x 70, the optimal topologies obtained by the
mean VM stress produce more mesh independentresults than those
by the maximum VM stress.

Table 2 summarizes the optimality of the four optimal topologies.
The stress states of the optimal topologies show that comparable
optimal states are reached by all optimizations. The volume ratio
values indicate that it is possible to obtain topologies of less volume
with the maximum VM stress solutions; however, the quantitative
advantageis only slight.

Mesh Density

For optimization with varying mesh densities, the optimization
driving criteria used was the maximum VM stress, the most com-
monly used criteria for ESO. The I' value was set to 1.0. Five
mesh densities were applied: 48 x 30, 64 x 40, 80 x 50, 96 x 60,
and 112 x 70.

Figure 6 depicts the optimal topologiesfor the varying mesh den-
sity. As the mesh density increased, the number of cavities also
increased. However, for the same number of cavities, the opti-
mal topologies are comparable despite the differing mesh densities
(Figs. 6¢-6e). Also, for a finer mesh, an optimal topology with less
volume can be obtained, hence, it can be said that a finer mesh leads
to more refined optimization.

Table 3 summarizes the optimality of the optimal topologies of
Fig. 6. The stress states of the optimal topologies show that they all

Table 3 Optimality comparison of varying mesh densities

Volume, Maximum Mean
Mesh Odel % stress stress
48 x 30 3.70 44.03 17.20 6.80
64 x 40 3.60 43.59 19.66 6.98
80 x 50 3.87 41.25 22.40 7.40
96 x 60 3.96 40.69 26.73 7.56
112x 70 4.18 37.17 30.76 8.26

¢)I'=0.96— 0.81

b)I'=0.99— 0.97

AT =0.80

Fig.7 Optimal topologies with varying I
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Fig.8 Evolutionary history of topologies with varying I.

have reached comparable optimal states. The maximum VM stress
of the final topology still increases as the mesh density increases.
However, relative to theirinitial state, the maximum VM stress of the
mesh density 48 x 30 increased by 33.8%, whereas thatof 112 x 70
increased only by 3%.

For each mesh density, ICC is applied several times with varying
I" values. Whereas the number of cavities increase with mesh den-
sity at I' = 1.0, the range in which ICC created cavities decreases
with mesh density. For mesh 48 x 30, three cavities are obtained at
I' =0.80, and no cavities are created when I = 0.75. However, for
mesh 80 x 50, no cavities are created at I' =0.80. This is due to
the more refined optimization, where for a high mesh density, the
stresses are more evenly distributedand, hence, a “better” optimum
is obtained. Thus, a lower value of ICR can be obtained in a coarse
mesh, leading to a larger range of a possible I' values that create
cavities.

Cavity Creation Number T’

For the 80 x 50 mesh, the short cantilever beam was optimized,
driven by the maximum VM stress. I was set to values between 1.0
and 0.80 at an interval of 0.01.

The topologiesin Fig. 7 are obtainedat a volume of approximately
45%. When I = 0.80, no cavities are created and the optimization
process is equivalent to nibbling ESO. Thus, the evolutionary his-
tory of this topology is quite different from the other solutions and
the difference in the optimality and the stress states as shown in
Table 4. However, the other topologies have reached a comparable
optimality. Thisis also reflectedin the evolutionaryhistories of these
topologies (Fig. 8). Despite the differences in the final topologies,
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Table4 Optimality comparison of varying I

Volume, Maximum Mean
r Cavities Odel % stress stress
1.0 6 3.60 45.2 22.39 6.837
0.99-0.97 5 3.54 45.3 22.39 6.822
0.96 3 3.47 45.3 22.26 6.865
0.95-0.93 3 3.45 45.2 22.27 6.887
0.92 3 3.43 44.8 22.25 6.937
091 3 3.45 45.5 22.25 6.860
0.90 3 3.47 45.2 22.25 6.892
0.89-0.87 3 3.45 45.5 22.24 6.864
0.86 3 3.51 45.2 22.24 6.914
0.85-0.84 3 3.47 45.3 22.24 6.888
0.83 3 3.49 45.2 22.23 6.910
0.82 3 3.42 452 22.23 6.900
0.81 3 3.42 45.2 22.23 6.894
0.80 0 3.85 43.6 25.18 7.554
7
w87 f
2
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)
]
O 4
-
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5 8
£
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2
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r

Fig.9 Number of cavities vs I
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Fig. 10 Problem definition of cantilevered beam of aspect ratio 3.

they follow the same evolutionary path until too much material is
removed and the solutions become numerically unstable. The evo-
lutionary history of the nibbling ESO solution, however, deviates
from the other evolutionary paths earlier on due to the prevention
of a cavity creation.

As the value of I' decreases, the number of cavities decreases
in general as displayed in Fig. 9. This is demonstrated in Figs. 7b
and 7c, where the exact same optimum solution is reached although
the I' values were different. Furthermore, the I values from 0.96 to
0.81 produced the same number of cavities, and their topologies are
very similar. The stress states and the evolutionary histories suggest
only a slight variationof optimalities among these topologies. Thus,
it can safely be said that the topologies with the same number of
cavities are of an equivalentoptimum for practical purposes and the
differences are insignificant. Also note that there exists a bound of
mesh density and the I" values of which lead to the same number of
cavities.

Optimization of Cantilevered Beam of Aspect Ratio 3
Problem Definition

A cantilevered beam of aspect ratio 3 is optimized. The beam
was built in at the left, and a 100-N downward force is applied
at the bottom right tip as shown in Fig. 10. Again, the material
property of steel is set and four-node plate elements are used to

d)T'=0.60
Fig. 11 Optimal topologies with varying I for 60 x 20.

b)T' =0.90 d)T'=0.60
Fig. 12 Optimal topologies with varying I for 90 x 30.

d)TI'=0.60

b) T =0.90
Fig. 13 Optimal topologies with varying I" for 120 x 40.
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Fig. 14 Number of cavities vs I

model the problem. The maximum VM stress is selected for the
ESO driving criterion. Mesh density and I" values are varied. The
optimal topologies are selected at an equivalent volume level of
around 53%.

Results

Three different mesh densities were tested: 60 x 20,90 x 30, and
120 x 40. For the mesh of 60 x 20, I' was from 1.0 to 0.35 at in-
tervals of 0.05, and, for the other mesh densities, I' varied from
1.0 to 0.30 at intervals of 0.10. Figures 11-13 summarize the opti-
mal topologies.

Similarly to the first example, the number of cavities increases
with mesh density and I" values as displayedin Fig. 14. For asmaller
element size, a smaller amount of material can be removed at each
iteration,leadingto a more refined optimizationand, hence, a greater
number of cavities in the optimal topology.

The other parameter considered for this example is the I" values,
as summarized in Fig. 14. For all three mesh densities, no cavities
are created for I less than or equal to 0.35. Table 5 suggests that
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Table 5 Summary optimality of beam: aspect ratio of 3

Volume, Maximum Mean Mean/maximum Number of

r Odel % stress stress stress ratio cavities
Mesh 60 x 20
1.00 23.21 53.1 12547  45.37 0.362 4
0.95 2320 529 12543  45.52 0.363 4
0.90 22.66 53.0 121.84 4543 0.373 4
0.85 23.65 53.1 129.26  45.81 0.354 3
0.80 22.42 534 122.53  45.63 0.372 3
0.75 23.59 529 129.60  46.27 0.357 2
0.70 23.60 52.9 130.38  46.20 0.354 2
0.65 23.94 53.1 130.85  46.26 0.354 2
0.60 25.59 52.8 142.16  47.28 0.333 1
0.55 2456 53.1 137.18  47.01 0.343 1
0.50 24.60 532 13593  47.05 0.346 1
045 24.07 52.8 132.27  47.46 0.359 1
040 24.00 52.8 132.60  47.57 0.359 1
0.35 31.35 52.8 17040  50.84 0.298 0
Mesh 90 x 30
1.00 22.05 532 14225  46.31 0.326 5
0.90 2148 53.1 14225  46.48 0.327 4
0.80 22.19 532 144.09 47.17 0.327 2
0.70 2329 532 14648  47.31 0.323 2
0.60 24.13 532 155.68  47.75 0.307 1
0.50 2393 532 155.37  48.03 0.309 1
040 2322 53.0 151.79  48.36 0.319 1
0.30 32.38 532 202.35  50.96 0.252 0
Mesh 120 x 40
1.00 21.29 53.1 188.42  46.72 0.248 6
0.90 21.68 53.1 188.49  47.04 0.250 4
0.80 21.84 53.1 188.31  47.28 0.251 3
0.70 21.57 53.1 189.22  47.32 0.250 3
0.60 23.94 53.0 188.49  48.45 0.257 1
0.50 22.99 53.1 188.47 48.42 0.257 1
0.40 23.37 53.0 188.46  49.00 0.260 1
0.30 29.54 53.0 22045 5191 0.235 0

the optimalities of the same mesh density solutions are equivalent,
and no significant differences are observed. This indicates that all
topologies with varying number of cavities are valid in satistying
the design requirements. Also note that the same number of cavities
can be obtained for a range of I" values.

Conclusions

This paper presented the development of ICC based on ESO to
determine an optimal topology with a predefined number of cavi-
ties. It has been demonstrated that delaying cavity initiation during
optimization using the cavity creation number I can control the
number of cavities in an optimal topology.

It has been recognized in this study that there are a few optimiza-
tion parameters that affect the number of cavities. The parameters
observed to have direct influences on the number of cavities were
the ESO driving criterion, mesh density, and I". It was seen that
using the maximum VM stresses was more mesh dependent than
the mean value.

One contributing factor to mesh dependency of ESO is the size of
the elements. As the element size decreases, ESO is able to remove a
smalleramountof material ateachiteration. This allows for a greater
number of cavities in a solution; hence, the number of cavities in
the optimal topologies increases as the mesh density increases.

I" is a newly introduced parameter in ICC to control when a cav-
ity is to be initiated, where I' = 1.0 sets the optimization method
to original ESO, creating the maximum optimal number of cavi-
ties, and I' = 0.0 sets to nibbling ESO, creating no cavities. It was
displayed that increasing the I' value also increased the number of
cavities, as intended. It was confirmed that topologies of an equiva-
lent optimality with a varied number of cavities could be determined
by varying I'.

The generaltrends obtainedin this study offera guide for selecting
these parameters for a desired number of cavities on a trial-and-error
basis. It was observed that the same number of cavities with little or
no differencein topology could be obtained for arange of I values.

Therefore, with the knowledge of selecting the mesh density for a
typical FEA problem, one may obtain an optimal topology with a
desired number of cavities in one or a few iterations of ICC.
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