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In the � eld of topologyoptimization,increasing interest has been applied toward improvingthe practical applica-
bility of the methods.Mechanically, a cavity in a structure introduces stress concentrations and, hence, structurally
undesirable effects on the design. However, designs such as aircraft fuselages and wing ribs often require a speci� ed
number of cavities for their functional capabilities. Cavities also have the favorable consequence of reducing the
weight. In this study, intelligent cavity creation is discussed as a means of determining an optimal topology with
a desired number of cavities, based on evolutionary structural optimization. After the effect is shown on the total
number of cavities when a new cavity is introduced during an optimization process, a parameter C is introduced
that delays cavity creation. An investigation is carried out to observe the effects of various parameters such as C
and mesh density on the � nal number of cavities.

Introduction

I N recent years, the developmentof the optimizationmethods has
focusedon producingthe best or optimum structure solely under

structural criteria such as stress, stiffness, and weight.1;2 However,
as topology optimization has reached a level of maturity, interest
is growing in the practical applicability of these methods. Some of
these questions are manufacturabilityof the solution, checkerboard
patterns, mesh dependency, and the incorporation of nonstructural
constraints.

Manufacturability of an optimal topology may relate to various
aspects of a design, such as the nature of an optimization method
or the availability of manufacturing tools and technology. By the
use of Aboudi microstructuresor microcells with voids (see Refs. 1
and 3), a topology is represented with varying degrees of density
values or perforated regions. To achieve a practical solution, the
penalty technique is often employed to eliminate the intermediate
densities.4 The solid isotropic microstructurewith penalty method5

hasbeenintroducedas an alternativemethod that suppressedtheper-
foratedregionsby relating the stiffnessto the densityof the isotropic
material with a power greater than one. Another impractical feature
commonlyobservedin optimal topologiesis jaggededges.6¡8 These
are due to the use of � nite elements and do not representthe optimal
features.Postprocessingusing spline approximationsand shape op-
timization has been suggested to obtain smooth outlines for these
topologies.9;10
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A checkerboardpatterndescribesa regionof alternatingsolid and
void elements in a topology and is commonly found in optimal so-
lutions. It has been proven that the formation of the checkerboards
is due to numerical instability and does not represent an optimal
feature of the design.11;12 Following on from this discovery, several
methods have been introducedto eliminate or prevent the formation
of the checkerboard patterns.13 It has been shown that the use of
higher-order � nite elements mostly prevents checkerboarding11;12;
however, this is at the expense of the computational cost. An al-
ternative and computationallycheaper method is to use a weighted
average of the design sensitivity14 or elemental density15;16 over an
element and its neighbors.

It has been seen that reducing mesh dependency also reduces
checkerboarding.13:17 The mesh independent � ltering suggested
by Sigmund is an extension of the checkerboard � lter using the
weighted averagesof elements, which was mentioned earlier.14 The
method uses the element sensitivities computed by weighted aver-
ages based on the distances between elements and has been shown
to produce mesh-independentdesigns.

Another technique that produces mesh-independent results is to
introduce a local gradient constraint on element density variation.
Petersson and Sigmund18 have been able to prove that the gradient
constraint not only ensures existence of a solution but also prevents
the formation of checkerboards.However, the algorithm is consid-
ered to be computationally demanding due to the large number of
constraints.

The perimeter method imposes an additional constraint on the
perimeter, which is the sum of the circumferences of the internal
boundaries.19 A checkerboard can be viewed as a region of nu-
merous holes, and the number of holes is proportional to the total
perimeter. Thus, by introducingan upper bound to the total perime-
ter, it effectivelyreduces the numberof holes that can be createdand,
hence, reduces checkerboards and mesh dependency. The perime-
ter method has been extended to three-dimensional optimization
problems.20

A common feature of the preceding three methods (i.e., mesh
independent � ltering, local gradient constraints, and perimeter
method) is their potential ability to incorporate a sizing require-
ment as a design constraint. Sizing requirements are often deter-
mined by nonstructuralconcernssuch as manufacturingtechnology,
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functions,and aesthetics.In engineeringdesigns,some of these con-
straints may be more critical than the structural constraints.

Mesh independent� ltering has been shown to be ef� cient in min-
imum member size control, although it is not applicable to multiple
constraint optimization problems.17 The local gradient constraint
method,however,hassuccessfullybeenextendedto minimummem-
ber size control problems with multiple constraints. Zhou et al.17

were able to impose the minimum member radius using a density
slope constraint and found more manufacturable solutions.

A direct consequenceof the local gradient constraint on the ele-
ment densities is that it imposes an upper bound to the design oscil-
lations and, consequently,the maximum number of cavities.18 Sim-
ilarly, the perimeter constraint reduces the number of cavities in an
optimal topology, thereby preventing a checkerboard formation.19

Although these methods have the potential to control the number
of cavities, the bounds or values of these parameters that lead to a
desired number of cavities are not known.

Intelligentcavity creation (ICC) attempted to control the number
of cavitiesin anoptimal topology.21 Basedonevolutionarystructural
optimization2 (ESO), ICC controlswhen the cavity is createdduring
optimization. The method starts from the full design domain with
no cavities and creates cavities as needed. Thus, when the number
of cavities reaches a desired number, ICC no longer creates cavities
but continues optimizing the existing boundaries, that is, topology
optimizationbecomes shape optimization.It has beendemonstrated
that delaying the cavity initiation reduces the maximum number of
cavities in the � nal topology. As in the perimeter control method,
ICC also prevents the formation of checkerboards.

A further investigation on the ICC algorithm is carried out and
presented in this paper, aimed to obtain guidelines for the selection
of the initial parameters for a desirednumber of cavities.During the
study, the ICC algorithm was modi� ed to improve its effectiveness.
The next section explains the original formulation of ICC, followed
by a sectionoutliningthe modi� cationsand the revisedICC method.
The effects of the various parameters such as optimization rate and
mesh density on the � nal topology are then studied and discussed.
The results indicate a relationship between the parameters and the
number of cavities and provide a guide for selecting the parameters.

Original Formulation of ICC
It is proposed that there exists a set of optimal topologies for a

given design problem, with a varying number of cavities.21 Origi-
nal ESO � nds the solution with the maximum number of cavities
whereas nibbling ESO � nds the solution with no cavities.2

The previousformulationof ICC is a hybridof these two methods:
originalESO andnibblingESO. NibblingESO is appliedto optimize
only the boundaries of a structure. At the end of each iteration, the
stressvalues inside the structureare examinedto determine the need
for a cavity.If a low-stressregioninsidethe structurehas stressbelow
a prede� ned threshold, then it is said that there is a need for a cavity.
In such a case, original ESO is applied to initiate an internal cavity.
After creating a new cavity, nibbling ESO is continued to modify
the boundaries until there is a need for another cavity.

The need for a cavity is measured by insert cavity ratio (ICR),
which is a function of the current stress state and changes as the
structure is evolved, [Eq. (1)]. When this value is less than or equal
to the prede� ned threshold cavity creation number 0, a new cavity
is initiated.Note that for stress-basedESO, the optimization-driving
criterion is commonly the elemental von Mises stress:

ICR D ¾VM min

¾VM b;min

(1)

where ¾VM min is the minimum criterion of nonboundary elements
and ¾VM b;min the minimum criterion of boundary elements.

Modi� ed Formulation of ICC
De� nition of ICR

A stress distributionof a domain can be representedthree dimen-
sionally as in Fig. 1, where, in this case, a low-stress region and
hence a need for a new cavity, is recognized at A. However, one
may encounter cases where the boundary stress is lower than the
nonboundary stress that is less than the deletion criterion. Such a

Fig. 1 Example of stress distribution.

a) ICR >1 b) ICR = 1 c) 0 < ICR < 1

Fig. 2 Two-dimensional stress distributions.

distributionis depicted in Fig. 2c, in the simpli� ed two-dimensional
space where there is a need for a new cavity at B. However, due to
the low boundary stress, ICR can still be greater than one, and the
need for new cavities is not recognized.

Thus, a new de� nition of ICR is introduced. In contrast to the
previous de� nition that was a function of boundary stress values,
the new de� nition is a function of the deletion criterion. Here, only
the magnitudes of the stress are of interest, and, hence, the absolute
values are used to account for negative stresses:

ICR D j¾nb=¾delj (2)

where ¾nb is the minimum stress of nonboundaryelements and ¾del

is the deletion criterion below which all elements are removed.
As a structure is evolved, the value of ICR changes and, thus, is

calculated at every iteration. If this value is greater than one, the
stress distribution can be depicted in two dimensions as in Fig. 2a,
where all stress values inside the structure are greater than ¾del, and,
hence, there is no need for a cavity.

When ICR D 1, the minimum nonboundary stress value equals
to ¾del (Fig. 2b). If, at this point, inside elements are allowed to be
removed, all elements with the stress value of ¾del or less would be
removed, and, thus, it can be said that the optimization technique is
equivalent to original ESO.

When 0 < ICR < 1 such as in Fig. 2c, there is at least one point
inside the structure where the stress value is less than ¾del. Original
ESO immediatelyremoves the elementswith stress · ¾del; thus, this
stress state would not normally be observed.However ICC controls
when a cavity is to be created,where the lower ICR value represents
an increased need for a cavity.

The value of ICR is compared with 0 to determine the need for a
cavity. A cavity is created if the ICC inequality (3) is satis� ed:

ICR · 0 (3)

where 0 is the cavity creation number, 0 · 0 · 1.
The value of ICR indicates the need for a cavity, which increases

as ICR decreases.Hence, the delay mechanism for a cavity creation
is controlled by the magnitude of 0, with the level of delay being
inversely proportional to 0. Note here that when 0 is set to 0, the
ICC inequalitycannotbe true; therefore,a cavity will notbe created.
Therefore, ICC with 0 D 0 is equivalent to nibbling ESO.

Starting a Cavity
The preceding ICC method employs original ESO22 to initiate a

cavity,where elementsare removedaccordingto the ESO inequality
(4):

¾VM;e · ¾Del Crit (4)

where ¾Del Crit is the deletion criterion, RR £ ¾VM;max; RR the rejec-
tion ratio2; and ¾VM;e the selected criterion of element e.
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When the optimization technique is switched during an evolu-
tionary process and an immediate initiation of a cavity is desired,
RR must be determined such that a cavity is created immediately,
and this is not an obvious task.

However, when a new cavity is required, the location for a new
cavity is known, namely, where the minimum nonboundary stress
occurs. Therefore, when a new cavity is needed, a new deletion
criterion is calculated according to Eq. (5) instead of the original
ESO formulation (4):

¾del D j¾nbj £ .1 C RRC / (5)

where RRC is the rejection ratio set to a small number, typically
0.001.

The new de� nition of the deletion criterion is a value slightly
greater than the minimum stress of the nonboundaryelements. This
ensuresan immediate initiationof the cavitiesat the minimum stress
locations in the structure. Furthermore, if there were more than one
minimum stress location, which would be the case in symmetrical
structures,an appropriatenumber of cavities would be created with
a few elements per cavity. It also follows that one iteration would
suf� ce to initiate the cavities.

After creating an appropriatenumber of cavities, nibblingESO is
continued with the earlier evolutionary rate constants. This allows
further modi� cations of the boundaries including the boundary of
any new cavities until the stress distribution is such that there is a
need for more cavities.

Modi� ed Methodology of ICC
When a designproblemis de� ned,a � nite element analysis(FEA)

is carried out on the design domain, providing the stress values to
determine which boundary elements are to be removed. Up to this
point, it followsnibblingESO. However, at the end of a steady state,
ICR is calculatedandcomparedwith 0 to determinewhethera cavity
is required. If the ICC inequality (3) is not satis� ed, nibbling ESO
is continued.If there is a need for a cavity, a new deletioncriterion is
calculated according to Eq. (5), and all boundary and nonboundary
elements below the new deletion criterion are removed.

After starting a cavity, the number of new cavities is counted, and
nibbling ESO is continued again until another need of new cavities
arises. When the current number of cavities reaches the required
number of cavities initially speci� ed by the user, then there is no
need to create any more cavities. Thus, nibbling ESO is continued
without calculating ICR until the optimum is found and/or all of the
speci� ed criteria are met.

The step-by-step process of the ICC algorithm is outlined here-
after and summarized in Fig. 3:

1) De� ne the design problem and specify kinematic constraints
and material properties. Specify the number of cavities required in
the structure and a value for 0.

2) Start nibbling ESO.
3) When a steady state is reached, check whether all design

constraints are met. If all design constraints are met and an opti-
mum is reached, terminate the optimizationprocess here, otherwise
continue to step 4.

4) Compare the current number of cavities with the speci� ed
required number of cavities. If there are enough cavities, then go
back to step 2 and continue nibbling ESO.

5) If there are not enough cavities, calculate the value of ICR and
compare it with 0. If ICR is greater than 0, go back to step 2 and
continue nibbling ESO, otherwise continue to step 6.

Fig. 3 ICC algorithm.

Table 1 Initial stress states of short cantilever beam

Maximum Mean Mean/maximum
Mesh stress stress stress ratio

48 £ 30 12.86 3.350 0.261
64 £ 40 17.07 3.354 0.197
80 £ 50 21.30 3.356 0.158
96 £ 60 25.53 3.358 0.132
112£ 70 29.77 3.359 0.113

Fig. 4 Short cantilever beam design problem.

6) To createa cavity, � rst calculate the deletioncriterion(5). Then
remove all elements with stress values below the deletion criterion
value. After creating a cavity, go back to step 2.

Investigation of Optimization Parameters
and Number of Cavities

ICC controls when a cavity is initiated by varying 0. However,
there are otheroptimizationparameterssuch as the mesh densityand
ESO driving criterion. The effects of various initial parameters on
the optimum solutionsare investigatedand the results are discussed
in this section.

Optimization of Short Cantilever Beam
Problem De� nition

A short cantileverbeam of aspect ratio 1.6 is optimizedusing ICC
with varying parameter values. The beam is built in at the left-hand
side and a 100-N downward force is applied in the middle of the
right-hand end, as shown in Fig. 4. The material property of steel
is assumed and plane stress/strain elements are used to model the
problem. The ESO driving criterionwas elemental von Mises (VM)
stress. The varied parameters are optimization-drivingcriterion of
maximumandmeanstress,mesh density,and 0. Table1 summarizes
the initial stress state for various mesh density.

The optimal topologies are selected by considering two factors:
volumeand the ratio of the mean over maximumVM stress.Topolo-
gies with a volume reductionof around40% are consideredfor com-
parison. The stress ratio represents the evenness in the distribution
of VM stresses, and, for a fully stressed design, the higher stress ra-
tio value is preferred. Ideally, the stress ratio should trend upward to
unity, but due to local high stresses at supports and load application
points this rarely happens with FEA (Table 1).

Optimization Driving Criterion
The maximum VM stress and the mean VM stress are selected

for the optimization-drivingcriteria. Using the mean VM stress as
an optimization-driving criterion means that when calculating the
deletion criterion in Eq. (4), the mean VM stress value is multiplied
by RR, instead of the maximum VM stress. Two mesh densities are
used: 64 £ 40 and 112 £ 70. The value of 0 is set to 1.0, creating
the maximum number of cavities for the given conditions.

As can be seen in Table 1, the calculation of the maximum VM
stress depends greatly on the mesh density due to the singularity
near the point loads and supports in the FEA formulation. Table 1
suggests that the maximum VM stress is approximately linearly
proportionalto themeshdensity.However, the mean VM stressdoes
not vary greatly as the mesh density increases. It follows, therefore,
that optimization driven by the maximum VM stress is more mesh
dependent than the one by the mean VM stress.
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Table 2 Optimality comparison of maximum and mean VM
stress as driving criteria

Volume, Maximum Mean
Mesh Criteria ¾del % stress stress

64 £ 40 Maximum 3.60 43.6 19.66 6.98
112 £ 70 Maximum 4.18 37.2 30.76 8.26
64 £ 40 Mean 3.58 44.7 19.59 6.83
112 £ 70 Mean 3.82 40.6 30.64 7.66

a) 64 ££ 40 maximum VM

b) 64 ££ 40 mean VM

c) 112 ££ 70 maximum VM

d) 112££ 70 mean VM

Fig. 5 Optimal topologies with varying optimization driving criteria.

a) 48 £ £ 30

b) 64 £ £ 40

c) 80 £ £ 50

d) 112 £ £ 70( ´´ 96 £ £ 60)

Fig. 6 Optimal topologies with varying mesh densities.

This mesh dependency characteristic can be seen in Fig. 5. For
mesh 64 £ 40 and 112 £ 70, the optimal topologiesobtained by the
mean VM stress produce more mesh independent results than those
by the maximum VM stress.

Table 2 summarizes the optimalityof the four optimal topologies.
The stress states of the optimal topologies show that comparable
optimal states are reached by all optimizations. The volume ratio
values indicate that it is possible to obtain topologiesof less volume
with the maximum VM stress solutions; however, the quantitative
advantage is only slight.

Mesh Density
For optimization with varying mesh densities, the optimization

driving criteria used was the maximum VM stress, the most com-
monly used criteria for ESO. The 0 value was set to 1.0. Five
mesh densities were applied: 48 £ 30, 64 £ 40, 80 £ 50, 96 £ 60,
and 112 £ 70.

Figure 6 depicts the optimal topologiesfor the varyingmesh den-
sity. As the mesh density increased, the number of cavities also
increased. However, for the same number of cavities, the opti-
mal topologies are comparable despite the differing mesh densities
(Figs. 6c–6e). Also, for a � ner mesh, an optimal topology with less
volume can be obtained,hence, it can be said that a � ner mesh leads
to more re� ned optimization.

Table 3 summarizes the optimality of the optimal topologies of
Fig. 6. The stress states of the optimal topologies show that they all

Table 3 Optimality comparison of varying mesh densities

Volume, Maximum Mean
Mesh ¾del % stress stress

48 £ 30 3.70 44.03 17.20 6.80
64 £ 40 3.60 43.59 19.66 6.98
80 £ 50 3.87 41.25 22.40 7.40
96 £ 60 3.96 40.69 26.73 7.56
112£ 70 4.18 37.17 30.76 8.26

a) = 1.0

b) = 0.99 ¡ ¡ 0.97

c) = 0.96 ¡¡ 0.81

d) = 0.80

Fig. 7 Optimal topologies with varying C .

Fig. 8 Evolutionary history of topologies with varying C .

have reached comparable optimal states. The maximum VM stress
of the � nal topology still increases as the mesh density increases.
However, relative to their initialstate, the maximumVM stressof the
mesh density 48 £ 30 increasedby 33.8%, whereas that of 112 £ 70
increased only by 3%.

For each mesh density, ICC is applied several times with varying
0 values. Whereas the number of cavities increase with mesh den-
sity at 0 D 1:0, the range in which ICC created cavities decreases
with mesh density. For mesh 48£ 30, three cavities are obtained at
0 D 0:80, and no cavities are created when 0 D 0:75. However, for
mesh 80 £ 50, no cavities are created at 0 D 0:80. This is due to
the more re� ned optimization, where for a high mesh density, the
stresses are more evenly distributedand, hence, a “better” optimum
is obtained. Thus, a lower value of ICR can be obtained in a coarse
mesh, leading to a larger range of a possible 0 values that create
cavities.

Cavity Creation Number 0

For the 80 £ 50 mesh, the short cantilever beam was optimized,
driven by the maximum VM stress. 0 was set to values between 1.0
and 0.80 at an interval of 0.01.

The topologiesin Fig. 7 are obtainedat a volumeof approximately
45%. When 0 D 0:80, no cavities are created and the optimization
process is equivalent to nibbling ESO. Thus, the evolutionary his-
tory of this topology is quite different from the other solutions and
the difference in the optimality and the stress states as shown in
Table 4. However, the other topologies have reached a comparable
optimality.This is also re� ectedin the evolutionaryhistoriesof these
topologies (Fig. 8). Despite the differences in the � nal topologies,
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Table 4 Optimality comparison of varying C

Volume, Maximum Mean
0 Cavities ¾del % stress stress

1.0 6 3.60 45.2 22.39 6.837
0.99–0.97 5 3.54 45.3 22.39 6.822
0.96 3 3.47 45.3 22.26 6.865
0.95–0.93 3 3.45 45.2 22.27 6.887
0.92 3 3.43 44.8 22.25 6.937
0.91 3 3.45 45.5 22.25 6.860
0.90 3 3.47 45.2 22.25 6.892
0.89–0.87 3 3.45 45.5 22.24 6.864
0.86 3 3.51 45.2 22.24 6.914
0.85–0.84 3 3.47 45.3 22.24 6.888
0.83 3 3.49 45.2 22.23 6.910
0.82 3 3.42 45.2 22.23 6.900
0.81 3 3.42 45.2 22.23 6.894
0.80 0 3.85 43.6 25.18 7.554

Fig. 9 Number of cavities vs C .

Fig. 10 Problem de� nition of cantilevered beam of aspect ratio 3.

they follow the same evolutionary path until too much material is
removed and the solutions become numerically unstable. The evo-
lutionary history of the nibbling ESO solution, however, deviates
from the other evolutionary paths earlier on due to the prevention
of a cavity creation.

As the value of 0 decreases, the number of cavities decreases
in general as displayed in Fig. 9. This is demonstrated in Figs. 7b
and 7c, where the exact same optimum solution is reached although
the 0 values were different.Furthermore, the 0 values from 0.96 to
0.81 produced the same number of cavities, and their topologiesare
very similar. The stress states and the evolutionaryhistories suggest
only a slightvariationof optimalitiesamong these topologies.Thus,
it can safely be said that the topologies with the same number of
cavities are of an equivalentoptimum for practical purposesand the
differences are insigni�cant. Also note that there exists a bound of
mesh density and the 0 values of which lead to the same number of
cavities.

Optimization of Cantilevered Beam of Aspect Ratio 3
Problem De� nition

A cantilevered beam of aspect ratio 3 is optimized. The beam
was built in at the left, and a 100-N downward force is applied
at the bottom right tip as shown in Fig. 10. Again, the material
property of steel is set and four-node plate elements are used to

a) = 0.90

b) = 0.80

c) = 0.65

d) = 0.60

Fig. 11 Optimal topologies with varying C for 60 £ £ 20.

a) = 1.00

b) = 0.90

c) = 0.70

d) = 0.60

Fig. 12 Optimal topologies with varying C for 90 £ £ 30.

a) = 1.00

b) = 0.90

c) = 0.80

d) = 0.60

Fig. 13 Optimal topologies with varying C for 120 £ £ 40.

Fig. 14 Number of cavities vs C .

model the problem. The maximum VM stress is selected for the
ESO driving criterion. Mesh density and 0 values are varied. The
optimal topologies are selected at an equivalent volume level of
around 53%.

Results
Three differentmesh densitieswere tested: 60 £ 20, 90 £ 30, and

120£ 40. For the mesh of 60 £ 20, 0 was from 1.0 to 0.35 at in-
tervals of 0.05, and, for the other mesh densities, 0 varied from
1.0 to 0.30 at intervals of 0.10. Figures 11–13 summarize the opti-
mal topologies.

Similarly to the � rst example, the number of cavities increases
with mesh densityand 0 valuesas displayedin Fig. 14. For a smaller
element size, a smaller amount of material can be removed at each
iteration,leadingto a more re� ned optimizationand,hence,a greater
number of cavities in the optimal topology.

The other parameter considered for this example is the 0 values,
as summarized in Fig. 14. For all three mesh densities, no cavities
are created for 0 less than or equal to 0.35. Table 5 suggests that
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Table 5 Summary optimality of beam: aspect ratio of 3

Volume, Maximum Mean Mean/maximum Number of
0 ¾del % stress stress stress ratio cavities

Mesh 60 £ 20
1.00 23.21 53.1 125.47 45.37 0.362 4
0.95 23.20 52.9 125.43 45.52 0.363 4
0.90 22.66 53.0 121.84 45.43 0.373 4
0.85 23.65 53.1 129.26 45.81 0.354 3
0.80 22.42 53.4 122.53 45.63 0.372 3
0.75 23.59 52.9 129.60 46.27 0.357 2
0.70 23.60 52.9 130.38 46.20 0.354 2
0.65 23.94 53.1 130.85 46.26 0.354 2
0.60 25.59 52.8 142.16 47.28 0.333 1
0.55 24.56 53.1 137.18 47.01 0.343 1
0.50 24.60 53.2 135.93 47.05 0.346 1
0.45 24.07 52.8 132.27 47.46 0.359 1
0.40 24.00 52.8 132.60 47.57 0.359 1
0.35 31.35 52.8 170.40 50.84 0.298 0

Mesh 90 £ 30
1.00 22.05 53.2 142.25 46.31 0.326 5
0.90 21.48 53.1 142.25 46.48 0.327 4
0.80 22.19 53.2 144.09 47.17 0.327 2
0.70 23.29 53.2 146.48 47.31 0.323 2
0.60 24.13 53.2 155.68 47.75 0.307 1
0.50 23.93 53.2 155.37 48.03 0.309 1
0.40 23.22 53.0 151.79 48.36 0.319 1
0.30 32.38 53.2 202.35 50.96 0.252 0

Mesh 120£ 40
1.00 21.29 53.1 188.42 46.72 0.248 6
0.90 21.68 53.1 188.49 47.04 0.250 4
0.80 21.84 53.1 188.31 47.28 0.251 3
0.70 21.57 53.1 189.22 47.32 0.250 3
0.60 23.94 53.0 188.49 48.45 0.257 1
0.50 22.99 53.1 188.47 48.42 0.257 1
0.40 23.37 53.0 188.46 49.00 0.260 1
0.30 29.54 53.0 220.45 51.91 0.235 0

the optimalities of the same mesh density solutions are equivalent,
and no signi� cant differences are observed. This indicates that all
topologies with varying number of cavities are valid in satisfying
the design requirements.Also note that the same number of cavities
can be obtained for a range of 0 values.

Conclusions
This paper presented the development of ICC based on ESO to

determine an optimal topology with a prede� ned number of cavi-
ties. It has been demonstrated that delaying cavity initiation during
optimization using the cavity creation number 0 can control the
number of cavities in an optimal topology.

It has been recognized in this study that there are a few optimiza-
tion parameters that affect the number of cavities. The parameters
observed to have direct in� uences on the number of cavities were
the ESO driving criterion, mesh density, and 0. It was seen that
using the maximum VM stresses was more mesh dependent than
the mean value.

One contributingfactor to mesh dependencyof ESO is the size of
the elements.As the element size decreases,ESO is able to removea
smalleramountofmaterialat each iteration.This allowsfor a greater
number of cavities in a solution; hence, the number of cavities in
the optimal topologies increases as the mesh density increases.

0 is a newly introduced parameter in ICC to control when a cav-
ity is to be initiated, where 0 D 1:0 sets the optimization method
to original ESO, creating the maximum optimal number of cavi-
ties, and 0 D 0:0 sets to nibbling ESO, creating no cavities. It was
displayed that increasing the 0 value also increased the number of
cavities, as intended. It was con� rmed that topologiesof an equiva-
lent optimalitywith a variednumberof cavitiescould be determined
by varying 0.

The generaltrendsobtainedin this studyoffera guidefor selecting
theseparametersfor a desirednumberof cavitieson a trial-and-error
basis. It was observed that the same number of cavities with little or
no difference in topology could be obtained for a range of 0 values.

Therefore, with the knowledge of selecting the mesh density for a
typical FEA problem, one may obtain an optimal topology with a
desired number of cavities in one or a few iterations of ICC.
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